摘要
LTspice®可用于對(duì)復(fù)雜電路進(jìn)行統(tǒng)計(jì)容差分析。本文介紹在LTspice中使用蒙特卡羅和高斯分布進(jìn)行容差分析和最差情況分析的方法。為了證實(shí)該方法的有效性,我們?cè)?/span>LTspice中對(duì)電壓調(diào)節(jié)示例電路進(jìn)行建模,通過內(nèi)部基準(zhǔn)電壓和反饋電阻演示蒙特卡羅和高斯分布技術(shù)。然后,將得出的仿真結(jié)果與最差情況分析仿真結(jié)果進(jìn)行比較。其中包括4個(gè)附錄。附錄A提供了有關(guān)微調(diào)基準(zhǔn)電壓源分布的見解。附錄B提供了LTspice中的高斯分布分析。附錄C提供了LTspice定義的蒙特卡羅分布的圖形視圖。附錄D提供關(guān)于編輯LTspice原理圖和提取仿真數(shù)據(jù)的說明。
本文介紹可以使用LTspice進(jìn)行的統(tǒng)計(jì)分析。這不是對(duì)6-sigma設(shè)計(jì)原則、中心極限定理或蒙特卡羅采樣的回顧。
公差分析
在系統(tǒng)設(shè)計(jì)中,為了保證設(shè)計(jì)成功,必須考慮參數(shù)容差約束。有一種常用方法是使用最差情況分析(WCA),在進(jìn)行這種分析時(shí),將所有參數(shù)都調(diào)整到最大容差限值。在最差情況分析中,會(huì)分析系統(tǒng)的性能,以確定最差情況的結(jié)果是否在系統(tǒng)設(shè)計(jì)規(guī)格范圍內(nèi)。最差情況分析的效力有一些局限性,例如:
- 最差情況分析要求確定哪些參數(shù)需要取最大值,哪些需要取最小值,以得出真實(shí)的最差情況的結(jié)果。
- 最差情況分析的結(jié)果往往會(huì)違反設(shè)計(jì)規(guī)范要求,致使必需選擇價(jià)格高昂的元件才能得到可接受的結(jié)果。
- 從統(tǒng)計(jì)學(xué)來說,最差情況分析的結(jié)果不能代表常規(guī)觀察到的結(jié)果;要研究展示最差情況分析性能的系統(tǒng),可能需要使用大量的被測(cè)系統(tǒng)。
進(jìn)行系統(tǒng)容差分析的另一種替代方法是使用統(tǒng)計(jì)工具來進(jìn)行元件容差分析。統(tǒng)計(jì)分析的優(yōu)點(diǎn)在于:得出的數(shù)據(jù)的分布能夠反映出在物理系統(tǒng)中通常需要測(cè)量哪些參數(shù)。在本文中,我們使用LTspice來仿真電路性能,利用蒙特卡羅和高斯分布來體現(xiàn)參數(shù)容差變化,并將其與最差情況分析仿真進(jìn)行比較。
除了提到的關(guān)于最差情況分析的一些問題外,最差情況分析和統(tǒng)計(jì)分析都能提供與系統(tǒng)設(shè)計(jì)相關(guān)的寶貴見解。關(guān)于如何在使用LTspice時(shí)使用最差情況分析的教程,請(qǐng)參見Gabino Alonso和Joseph Spencer撰寫的文章“LTspice: 利用最少的仿真運(yùn)行進(jìn)行最差情況的電路分析”。
蒙特卡羅分布
圖1顯示在LTspice中建模的基準(zhǔn)電壓,使用蒙特卡羅分布。標(biāo)稱電壓源為1.25 V,公差為1.5%。蒙特卡羅分布在1.5%的容差范圍內(nèi),定義251個(gè)電壓狀態(tài)。圖2顯示251個(gè)值的直方圖,圖中包含50個(gè)條形區(qū)間(bin)。表1表示與該分布相關(guān)的統(tǒng)計(jì)結(jié)果。

圖1.電壓源的LTspice原理圖(使用蒙特卡羅分布)

圖2.1.25 V基準(zhǔn)電壓的蒙特卡羅仿真結(jié)果,以50個(gè)條形區(qū)間和251個(gè)點(diǎn)組成的直方圖呈現(xiàn)
表1.蒙特卡羅仿真結(jié)果的統(tǒng)計(jì)分析
|
結(jié)果
|
平均值
|
1.249933
|
最小值
|
1.2313
|
最大值
|
1.26874
|
標(biāo)準(zhǔn)差
|
0.010615
|
正誤差
|
1.014992
|
負(fù)誤差
|
0.98504
|
高斯分布
圖3顯示在LTspice中建模的基準(zhǔn)電壓,使用高斯分布。標(biāo)稱電壓源為1.25 V,容差為1.5%。蒙特卡羅分布在1.5%的容差范圍內(nèi),定義251個(gè)電壓狀態(tài)。圖4顯示251個(gè)值的直方圖,圖中包含50個(gè)條形區(qū)間(bin)。表2表示與該分布相關(guān)的統(tǒng)計(jì)結(jié)果。

圖3.電壓源的LTspice原理圖(使用3-sigma高斯分布)
表2.高斯參考仿真結(jié)果的統(tǒng)計(jì)分析
|
結(jié)果
|
最小值
|
1.22957
|
最大值
|
1.26607
|
平均值
|
1.25021
|
標(biāo)準(zhǔn)差
|
0.006215
|
正誤差
|
1.012856
|
負(fù)誤差
|
0.983656
|

圖4.1.25 V基準(zhǔn)電壓的3-sigma高斯仿真結(jié)果,以50個(gè)條形區(qū)間和251個(gè)點(diǎn)組成的直方圖呈現(xiàn)
高斯分布是以鐘形曲線表示的正態(tài)分布,其概率密度如圖5所示。

圖5.3-sigma高斯正態(tài)分布
理想分布和LTspice仿真的高斯分布之間的關(guān)聯(lián)如表3所示。
表3.LTspice仿真的251個(gè)點(diǎn)高斯分布的統(tǒng)計(jì)分布
|
仿真
|
理想值
|
1-Sigma幅值
|
67.73%
|
68.27%
|
2-Sigma幅值
|
95.62%
|
95.45%
|
3-sigma幅值
|
99.60%
|
99.73%
|
綜上所述,LTspice可用于仿真電壓源的高斯或蒙特卡羅容差分布。該電壓源可用于對(duì)DC-DC轉(zhuǎn)換器中的基準(zhǔn)電壓進(jìn)行建模。LTspice高斯分布仿真結(jié)果與預(yù)測(cè)的概率密度分布高度吻合。
DC-DC轉(zhuǎn)換器仿真的容差分析
圖6顯示DC-DC轉(zhuǎn)換器的LTspice仿真原理圖,使用壓控電壓源來模擬閉環(huán)電壓反饋。反饋電阻R2和R3的標(biāo)稱值為16.4 kΩ和10 kΩ。內(nèi)部基準(zhǔn)電壓的標(biāo)稱值為1.25 V。在該電路中,標(biāo)稱調(diào)節(jié)電壓VOUT或設(shè)定點(diǎn)電壓為3.3 V。

圖6.LTspice DC-DC轉(zhuǎn)換器仿真原理圖
為了仿真電壓調(diào)節(jié)的容差分析,反饋電阻R2和R3的容差定義為1%,內(nèi)部基準(zhǔn)電壓的容差定義為1.5%。本節(jié)介紹三種容差分析方法:使用蒙特卡羅分布的統(tǒng)計(jì)分析、使用高斯分布的統(tǒng)計(jì)分析,以及最差情況分析(WCA)。
圖7和圖8顯示使用蒙特卡羅分布仿真的原理圖和電壓調(diào)節(jié)直方圖。

圖7.使用蒙特卡羅分布進(jìn)行容差分析的原理圖

圖8.使用蒙特卡羅分布仿真的電壓調(diào)節(jié)直方圖
圖9和圖10顯示使用高斯分布仿真的原理圖和電壓調(diào)節(jié)直方圖。

圖9.使用高斯分布進(jìn)行容差分析的原理圖

圖10.使用高斯分布仿真進(jìn)行容差分析的直方圖
圖11和圖12顯示使用最差情況分析仿真的原理圖和電壓調(diào)節(jié)直方圖

圖11.使用最差情況分析仿真進(jìn)行容差分析的原理圖

圖12.使用WCA進(jìn)行容差分析的直方圖
表4和圖13比較了容差分析結(jié)果。在這個(gè)示例中,WCA預(yù)測(cè)最大偏差,基于高斯分布的仿真預(yù)測(cè)最小偏差。具體如圖13中的箱形圖所示,箱形表示1-sigma限值,盒須表示最小和最大值。
表4.三種公差分析方法的電壓調(diào)節(jié)統(tǒng)計(jì)匯總
|
WCA
|
高斯
|
蒙特卡羅
|
平均值
|
3.30013
|
3.29944
|
3.29844
|
最小值
|
3.21051
|
3.24899
|
3.21955
|
最大值
|
3.39153
|
3.35720
|
3.36922
|
標(biāo)準(zhǔn)差
|
0.04684
|
0.01931
|
0.03293
|
正誤差
|
1.02774
|
1.01733
|
1.02098
|
負(fù)誤差
|
0.97288
|
0.98454
|
0.97562
|

圖13.調(diào)節(jié)電壓分布的箱形圖比較
總結(jié)
本文使用簡(jiǎn)化的DC-DC轉(zhuǎn)換器模型來分析三種變量,使用兩個(gè)反饋電阻和內(nèi)部基準(zhǔn)電壓來模擬電壓設(shè)定點(diǎn)調(diào)節(jié)。使用統(tǒng)計(jì)分析來展示得出的電壓設(shè)定點(diǎn)分布。通過圖表來展示結(jié)果。并與最差情況計(jì)算結(jié)果進(jìn)行比較。由此得出的數(shù)據(jù)表明,最差情況下的限值在統(tǒng)計(jì)學(xué)上是不可能的。
致謝
仿真均在LTspice中完成。
附錄A
附錄A介紹集成電路中經(jīng)調(diào)節(jié)基準(zhǔn)電壓的統(tǒng)計(jì)分布。
在調(diào)節(jié)前,內(nèi)部基準(zhǔn)電壓采用高斯分布,在調(diào)節(jié)后,采用蒙特卡羅分布。調(diào)節(jié)過程通常如下所示:
- 測(cè)量調(diào)節(jié)前的值。此時(shí),通常采用高斯分布。
- 該芯片能否進(jìn)行微調(diào)?如果不能,則放棄該芯片。此步驟基本上會(huì)剪除高斯分布的末尾部分。
- 調(diào)整數(shù)值。這會(huì)使基準(zhǔn)電壓盡可能接近理想值;數(shù)值離理想值越遠(yuǎn),調(diào)整的幅度越大。但是,微調(diào)分辨率非常精準(zhǔn),所以,接近理想值的基準(zhǔn)電壓值不會(huì)發(fā)生偏移。
- 測(cè)量調(diào)整后的數(shù)值,如果數(shù)值可以接受,則鎖定該值。
將得到的分布結(jié)果與原來的高斯分布相比,可看到有些數(shù)值沒有變化,而其他數(shù)值則盡可能接近理想值。生成的直方圖類似于立柱帶有弧形頂部,如圖14所示。

圖14.基準(zhǔn)電壓值在調(diào)節(jié)后的分布圖
雖然這看起來很像是隨機(jī)分布,但事實(shí)并非如此。如果產(chǎn)品是在封裝后微調(diào),那么其在室溫下的分布圖就如圖14所示。如果產(chǎn)品是在晶圓分類時(shí)進(jìn)行微調(diào),則組裝到塑料封裝時(shí)上述分布會(huì)再次展開(spread out)。其結(jié)果通常是歪斜的高斯分布。
附錄B
附錄B簡(jiǎn)要回顧LTspice中提供的高斯分布命令。將回顧sigma = 0.00333和sigma = 0.002時(shí)的分布,以及理想分布和仿真的高斯分布之間的一些數(shù)值比較。本附錄旨在提供仿真結(jié)果的圖表和數(shù)值分析。
圖15顯示電阻R1的1001點(diǎn)高斯分布的原理圖。

圖15.5-sigma高斯分布原理圖
值得注意的是對(duì).function語句的修改,將高斯函數(shù)的公差定義為tol/5。這導(dǎo)致標(biāo)準(zhǔn)偏差為0.002,或者在1%公差下偏差為1⁄5。直方圖如圖16所示。

圖16.1001點(diǎn)、5-sigma高斯分布的直方圖,包含50個(gè)條形區(qū)間
表5顯示1001點(diǎn)仿真的統(tǒng)計(jì)分析。值得注意的是,標(biāo)準(zhǔn)偏差為0.001948,而預(yù)測(cè)偏差為0.002。
表5.5-sigma分布仿真的統(tǒng)計(jì)分析
|
結(jié)果
|
平均值
|
1.000049
|
標(biāo)準(zhǔn)差
|
0.001948
|
最小值
|
0.99315
|
最大值
|
1.00774
|
中間值
|
1.00012
|
模式
|
1.00024
|
1 Sigma中的點(diǎn)
|
690 (68.9%)
|

圖17.1001點(diǎn)、3-sigma高斯分布的直方圖,包含50個(gè)條形區(qū)間
圖17和表6給出了類似的結(jié)果,sigma = 0.00333,或者在容差定義為1%時(shí)為1⁄3。
表6.3-Sigma高斯分布仿真的統(tǒng)計(jì)分析
|
結(jié)果
|
平均值
|
1.000080747
|
標(biāo)準(zhǔn)差
|
0.003247278
|
最小值
|
0.988583
|
最大值
|
1.0129
|
中間值
|
1.0002
|
模式
|
1.00197
|
1 Sigma中的點(diǎn)
|
690 (68.93%)
|